Fleet-wide Compressor Optimisation

Striving to reduce carbon footprint

22nd March 2017
Adrian Cowan, P.Eng.
Compression requires the burning of natural gas and/or consumption of electricity

Byproducts of which are potentially harmful emissions, including large amounts of Carbon Dioxide, CO$_2$

Are we compressing gas from A through B as efficiently as possible?

Study by Detechtion Technologies showed that it enables its customer base to eliminate over 600,000 metric tonnes of CO$_2$ emissions through ongoing compressor optimisation
Compression is used in:
- Gas extraction from low-pressure wells
- Transportation to market
- Enhanced Oil Recovery / Injection
- Storage and Processing

Power for compression
- Directly proportional to gas volumes and compression ratios
- Gas driven engine commonly used as power source
- Fuel for engine taken from production gas or alternatively sources sales gas
- Burning of gas for fuel results in release of combustion emissions, including CO₂
What causes excess power and fuel consumption?

Sources of inefficiencies:
- Recycle / Bypass valve open
- High interstage pressure drops
- Cylinder inefficiencies (Blowby)
- Excess compression (too many compressors)
- Under-utilised compressors
Recycling compressed gas:

- Happens when compressor capacity is greater than inlet gas volumes.
- Gas must be recycled from discharge back to suction in order to make up difference.
- Fuel gas is wasted as recycled gas has been compressed and then is reduced back to suction pressure to be compressed again.
Case Study:

Fuel gas savings generated by a bypass optimization on a 3 stage / 783 kW (Energy Industries FE650 / Waukesha L5108GL) compressor
High Interstage Pressure Drop

- Increase compression ratio across each stage
- Increase power and fuel gas consumption
- Decrease throughput
- Decrease efficiency on a basis of fuel gas burned per unit of production
Cylinder Blowby

- Cylinder inefficiencies resulting in gas slipping or recirculating within a cylinder
- Result of worn or damaged components – valves or piston rings
- Extra energy is used to compress gas resulting in excess heat being generated
- Causes elevated suction pressures and decreased throughput as well as excess fuel consumption
Case Study:

- Operating 3 compressors at reduced speed
- Plant performance curve generated
- Determined that only 2 compressors were required for desired operating conditions
Case Study:

- Operating 3 compressors at reduced speed
- Plant performance curve generated
- Determined that only 2 compressors were required for desired operating conditions
- 1 compressor shut down
- Total Fuel and Op Cost savings = $940k/yr
- Reduction in 8,800 tonnes/year CO₂

Plant Consolidation

<table>
<thead>
<tr>
<th>Plant Summary Table - Potential Annual Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Compressors Running</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Current Site Setup</td>
</tr>
<tr>
<td>Proposed Site Setup</td>
</tr>
<tr>
<td>Total Savings:</td>
</tr>
</tbody>
</table>

Annual $ Savings

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Fuel/Electrical Savings ($/Year):</td>
<td>$667,176</td>
</tr>
<tr>
<td>Total Op Cost Savings ($/Year):</td>
<td>$274,918</td>
</tr>
<tr>
<td>Total Consolidation Savings:</td>
<td>$942,094</td>
</tr>
</tbody>
</table>
Reciprocating compressors can only be fully optimised for maximum throughput if either the cylinder capacity utilisation or the power utilisation is 100%.

- **100% Cylinder Utilisation** = Max use of Stage 1 Cylinders
- **100% Power Utilisation** = Maximum Driver Output

Under-utilised consume more fuel gas per unit of production volume.
Under-utilised Compressors

Demo Compressor Unit 9999
Waukesha L7042GL/ArielJGK/4 @ 6000 kPagd

Well Deliverability from IPR Curve

Optimized Configuration

Initial Operating Conditions
Case Study:

- 1 client with 95 compressor packages
- Trends show weekly average throughput per horsepower used and suction pressure
- Increase in fuel efficiency shown despite a declining field
- 6% improvement in fuel usage on a per unit volume of throughput basis

~24,000 tonnes/yr reduction in CO$_2$
Opportunity Identification

How do we set about identifying opportunities is a fleet of compressors with various engine and compressor manufacturers?
Compressor Monitoring

- Daily Plant Reads
- Visual Inspection
- Used Oil Analysis
- Vibration Analysis
- Valve Cap Temps
- Infrared Cameras
- OEM Performance Runs

➢ While all important, these methods are incredibly time consuming to analyse a heterogeneous fleet of compressors
Detechtion Technologies’ compressor optimization and fleet management software

- Individual Compressor Diagnostic Analysis
- Station-Level Analysis (reports, graphs)
- Regional / Field Analysis (reports, graphs, tables)
- Total Fleet Analysis (maps, reports, graphs, tables)
- Optimised Compressor Loading Curves
- Vendor / 3rd Party Activity & Information
- Compressor Design Data & Photos
- Maintenance Recording & Reports
- Emissions Rates & Totals (calculated)
- Compressor Simulation Capabilities
Fleet Management Tools

Environmental Reports
- Fuel Gas Consumption Summary
- Emissions Report
- Emission Factors Report
- Driver Summary
- Gas Analysis Summary
- BC Carbon Tax Summary
- Electricity Consumption Summary

Maintenance Reports
- Maintenance Status & History Report
- Mean Time Between Failure
- Workorder
- Maintenance PM History
- Maintenance PM Due/Overdue Report
- Valve Recession Summary
- Maintenance Cost Report (For Individual Unit)
- Maintenance Cost Summary Report

Performance Reports
- Annual Operating Cost Savings
- Asset Optimization
- Asset Utilization Summary
- Availability & Reliability Report
- Damaged Units Report
- Fleet Performance Snapshot
- High Blowby Report
- Production Engineering
- Runtime Report
- Suspected Bypass
- Units on Bypass
- Units over Recommended Overhaul Hours
- Utilization History

Fleet Summary Reports
- Active Non-Reported Compressor Summary
- Administration Summary
- All Unit Summary
- Cash Flow at Risk Summary
- Fleet Surveillance Report
- Customized Thresholds And Factors Summary
- Hydrate Formation Risk Summary
- Operator Log History
- Reasons for Downtime
- Downtime Classification Summary
- Reported Compressor Summary
- Serial Number Summary
- Standby Compressor Summary
- Surplus Compressor Summary
- Total Management
- Top 10 Performance Summary
- Units by Arca and Field Summary

Other
- Fleet Hardware Reports
Fleet Management Tools

- Cash Flow at Risk (CFR) Horsepower
 - Potential fuel gas / electrical savings resulting from bypassed gas, high blowby, and/or a high interstage pressure drop

![Recip Cash Flow at Risk Summary](image)
Fleet Management Tools

- **Units on Bypass**

Recip Units On Bypass

(From 02/01/2017 to 02/28/2017)

<table>
<thead>
<tr>
<th>Unit #</th>
<th>Compressor Name</th>
<th>Location</th>
<th># of Stgs</th>
<th>Flow (E3m3/d)</th>
<th>Increment Available (E3m3/d)</th>
<th>Suct. Pressure (kPag)</th>
<th>kW % Utilized</th>
<th>Bypass Open (%)</th>
<th>Total CFR ($1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>Fenybank 02-01 K106</td>
<td>02-01-44-28-W4M</td>
<td>1</td>
<td>181,000</td>
<td>50,105</td>
<td>3833.0</td>
<td>71.27</td>
<td>54.00</td>
<td>287</td>
</tr>
<tr>
<td>2213</td>
<td>Pine Creek 12-62 7642GSI #2</td>
<td>12-62-56-19-W5M</td>
<td>3</td>
<td>150,001</td>
<td>82,578</td>
<td>191.0</td>
<td>51.80</td>
<td>10.00</td>
<td>196</td>
</tr>
<tr>
<td>2104</td>
<td>Ish 16-33 #2</td>
<td>16-33-54-15-W5M</td>
<td>1</td>
<td>275,001</td>
<td>85,487</td>
<td>1986.0</td>
<td>67.23</td>
<td>40.00</td>
<td>182</td>
</tr>
<tr>
<td>1974</td>
<td>Castiar 10-15 C-981</td>
<td>10-15-36-02 W5M</td>
<td>2</td>
<td>66,520</td>
<td>16,476</td>
<td>48.3</td>
<td>38.65</td>
<td>30.00</td>
<td>167</td>
</tr>
<tr>
<td>2103</td>
<td>Ish 16-33 #1</td>
<td>16-33-04-15-W5M</td>
<td>1</td>
<td>275,001</td>
<td>34,392</td>
<td>2633.0</td>
<td>81.43</td>
<td>40.00</td>
<td>91</td>
</tr>
<tr>
<td>2102</td>
<td>West Rigal b46-J</td>
<td>b-46-J5/4-A-10</td>
<td>3</td>
<td>92,000</td>
<td>8,567</td>
<td>26.6</td>
<td>45.52</td>
<td>3.00</td>
<td>96</td>
</tr>
<tr>
<td>1203</td>
<td>Marlboro 05-29 Unit #2 K-361</td>
<td>05-29-55-19-W5M</td>
<td>2</td>
<td>159,999</td>
<td>28,995</td>
<td>497.0</td>
<td>56.49</td>
<td>40.00</td>
<td>62</td>
</tr>
<tr>
<td>1301</td>
<td>Lochend 04-11 K601 - LP South</td>
<td>04-11-28-04-W5M</td>
<td>3</td>
<td>147,000</td>
<td>27,469</td>
<td>130.0</td>
<td>62.71</td>
<td>50.00</td>
<td>58</td>
</tr>
<tr>
<td>1300</td>
<td>Lochend 04-11 K600 - HP North</td>
<td>04-11-28-04-W5M</td>
<td>3</td>
<td>147,000</td>
<td>27,299</td>
<td>127.0</td>
<td>62.82</td>
<td>50.00</td>
<td>58</td>
</tr>
<tr>
<td>2218</td>
<td>Willisdene Green 08-01</td>
<td>08-01-41-06-W5M</td>
<td>2</td>
<td>25,988</td>
<td>13,904</td>
<td>110.3</td>
<td>31.49</td>
<td>84.00</td>
<td>54</td>
</tr>
<tr>
<td>2223</td>
<td>Marlboro 11-28</td>
<td>11-28-56-20-W5M</td>
<td>2</td>
<td>49,000</td>
<td>3,024</td>
<td>371.0</td>
<td>54.23</td>
<td>90.00</td>
<td>48</td>
</tr>
<tr>
<td>2053</td>
<td>BullMoose Capital 04-24</td>
<td>04-24-44-08-W5M</td>
<td>2</td>
<td>42,421</td>
<td>14,130</td>
<td>393.0</td>
<td>45.39</td>
<td>31.00</td>
<td>45</td>
</tr>
<tr>
<td>2041</td>
<td>Gull Lake 15-06 G3408</td>
<td>15-06-42-01-W5M</td>
<td>2</td>
<td>13,000</td>
<td>6,500</td>
<td>125.0</td>
<td>42.34</td>
<td>5.00</td>
<td>28</td>
</tr>
<tr>
<td>1980</td>
<td>Morningside 99-01 K102</td>
<td>09-01-43-01-W5M</td>
<td>3</td>
<td>50,000</td>
<td>7,800</td>
<td>121.0</td>
<td>50.57</td>
<td>10.00</td>
<td>23</td>
</tr>
<tr>
<td>1976</td>
<td>Morningside 99-01 K103</td>
<td>09-01-43-01-W5M</td>
<td>3</td>
<td>65,000</td>
<td>3,052</td>
<td>115.6</td>
<td>64.24</td>
<td>5.00</td>
<td>26</td>
</tr>
<tr>
<td>1163</td>
<td>Olds 10-26 #3</td>
<td>10-28-32-02-W5M</td>
<td>3</td>
<td>9,600</td>
<td>2,204</td>
<td>144.0</td>
<td>44.55</td>
<td>5.00</td>
<td>17</td>
</tr>
<tr>
<td>1124</td>
<td>13-16 (As43)</td>
<td>13-16-31-03-W5M</td>
<td>2</td>
<td>4,493</td>
<td>1,074</td>
<td>172.4</td>
<td>32.02</td>
<td>1.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Number of Units: 17
Total Flow (E3m3/d): 1,774,115
Total Increment Available (E3m3/d): 413,472
Total CFR: $142,7750

1.800.780.9798 www.detechtion.com

©2017 Detechtion Technologies – Confidential and Proprietary
Fleet Management Tools

- Production Engineering Report
 - Potential opportunity to recoup production due to available incremental production caused by under-utilised asset
Fleet Management Tools

- **Emission Summary (calculated)**

Recip Emissions Summary for Central Area
(From 02/01/2017 to 02/28/2017)

<table>
<thead>
<tr>
<th>Unit #</th>
<th>Compressor Name</th>
<th>Location</th>
<th>Inlet Gas Comp. (%)</th>
<th>Driver Type</th>
<th>Driver Make</th>
<th>Driver Model</th>
<th>Max. Rated</th>
<th>Avg. Used</th>
<th>YTR (hr)</th>
<th>CO2</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>VOCs</th>
<th>TPM</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>Ferrisank 02-01 K103</td>
<td>02-01-44-28-WM4</td>
<td>0.00</td>
<td>2.06</td>
<td>1.24</td>
<td>84.38</td>
<td>Turbo</td>
<td>Waukesha L7040CG</td>
<td>918.7</td>
<td>379.6</td>
<td>672</td>
<td>156.59</td>
<td>5.05</td>
<td>0.34</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>106</td>
<td>Ferrisank 02-01 K106</td>
<td>02-01-44-28-WM4</td>
<td>0.00</td>
<td>2.06</td>
<td>1.24</td>
<td>84.38</td>
<td>Turbo</td>
<td>Waukesha F3521G1L</td>
<td>535.4</td>
<td>381.6</td>
<td>672</td>
<td>153.08</td>
<td>0.51</td>
<td>0.09</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>108</td>
<td>Gulf Lake 15-06 G3408</td>
<td>15-06-42-01-NSM</td>
<td>0.00</td>
<td>1.42</td>
<td>1.62</td>
<td>61.96</td>
<td>Turbo</td>
<td>Cat</td>
<td>G3408TA</td>
<td>289.3</td>
<td>126.3</td>
<td>584</td>
<td>59.00</td>
<td>2.80</td>
<td>0.23</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>110</td>
<td>Headley 11-39 K110</td>
<td>11-39-44-02-NSM</td>
<td>0.00</td>
<td>2.56</td>
<td>1.65</td>
<td>79.43</td>
<td>Turbo</td>
<td>Caterpillar</td>
<td>G316TALE</td>
<td>655.1</td>
<td>695.0</td>
<td>665</td>
<td>258.29</td>
<td>1.05</td>
<td>1.35</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>113</td>
<td>Headley 11-39 K113</td>
<td>11-39-44-02-NSM</td>
<td>0.00</td>
<td>2.56</td>
<td>1.65</td>
<td>79.43</td>
<td>Turbo</td>
<td>Caterpillar</td>
<td>G316TALE</td>
<td>657.6</td>
<td>724.9</td>
<td>648</td>
<td>305.48</td>
<td>1.24</td>
<td>1.09</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>114</td>
<td>Westerose 14-27 K102</td>
<td>14-27-45-01-NSM</td>
<td>0.00</td>
<td>2.73</td>
<td>1.12</td>
<td>89.98</td>
<td>Turbo</td>
<td>Waukesha</td>
<td>L7040CG</td>
<td>1162.1</td>
<td>475.9</td>
<td>660</td>
<td>203.69</td>
<td>7.46</td>
<td>0.41</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>115</td>
<td>Westerose 14-27 K103</td>
<td>14-27-45-01-NSM</td>
<td>0.00</td>
<td>2.73</td>
<td>1.12</td>
<td>89.98</td>
<td>Turbo</td>
<td>Caterpillar</td>
<td>G316TALE</td>
<td>657.5</td>
<td>727.9</td>
<td>667</td>
<td>309.53</td>
<td>0.96</td>
<td>2.39</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>117</td>
<td>Westerose 11-29 K101</td>
<td>11-29-44-02-WSM</td>
<td>0.00</td>
<td>1.75</td>
<td>1.44</td>
<td>85.42</td>
<td>NA</td>
<td>Waukesha</td>
<td>F3521G1U</td>
<td>232.3</td>
<td>259.6</td>
<td>672</td>
<td>91.94</td>
<td>4.01</td>
<td>0.27</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>118</td>
<td>Westerose 11-29 K102</td>
<td>11-29-44-02-WSM</td>
<td>0.00</td>
<td>1.87</td>
<td>0.49</td>
<td>84.91</td>
<td>NA</td>
<td>Waukesha</td>
<td>F3521G1U</td>
<td>232.3</td>
<td>232.9</td>
<td>672</td>
<td>104.28</td>
<td>4.53</td>
<td>0.51</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>119</td>
<td>Westerose 11-29 K103</td>
<td>11-29-44-02-WSM</td>
<td>0.00</td>
<td>1.87</td>
<td>0.49</td>
<td>84.91</td>
<td>Turbo</td>
<td>Caterpillar</td>
<td>G316TA</td>
<td>657.6</td>
<td>697.9</td>
<td>672</td>
<td>207.72</td>
<td>0.91</td>
<td>1.78</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>120</td>
<td>Headley 03-18 K102</td>
<td>03-18-44-01-WSM</td>
<td>0.00</td>
<td>2.76</td>
<td>0.77</td>
<td>79.46</td>
<td>Turbo</td>
<td>Caterpillar</td>
<td>G316TALE</td>
<td>657.6</td>
<td>551.5</td>
<td>669</td>
<td>234.13</td>
<td>0.73</td>
<td>1.53</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>121</td>
<td>Gilby 10-34 K101</td>
<td>10-34-40-06-WSM</td>
<td>0.00</td>
<td>2.31</td>
<td>0.87</td>
<td>82.31</td>
<td>Turbo</td>
<td>Waukesha</td>
<td>L7040CG</td>
<td>1600.0</td>
<td>688.9</td>
<td>651</td>
<td>345.45</td>
<td>1.14</td>
<td>2.02</td>
<td>0.34</td>
<td>0.00</td>
</tr>
<tr>
<td>122</td>
<td>Headley 05-01</td>
<td>05-01-44-02-WSM</td>
<td>0.00</td>
<td>2.72</td>
<td>0.63</td>
<td>79.59</td>
<td>NA</td>
<td>Waukesha</td>
<td>F2886G1U</td>
<td>269.3</td>
<td>117.9</td>
<td>672</td>
<td>53.29</td>
<td>2.92</td>
<td>0.08</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>123</td>
<td>Gilby 03-28 K500</td>
<td>03-28-41-04-WSM</td>
<td>0.00</td>
<td>2.18</td>
<td>1.48</td>
<td>89.89</td>
<td>Turbo</td>
<td>Caterpillar</td>
<td>G316TALE</td>
<td>1767.3</td>
<td>1392.1</td>
<td>560</td>
<td>525.23</td>
<td>0.84</td>
<td>3.01</td>
<td>0.48</td>
<td>0.00</td>
</tr>
<tr>
<td>124</td>
<td>Gilby 03-28 K501</td>
<td>03-28-41-04-WSM</td>
<td>0.00</td>
<td>2.18</td>
<td>1.48</td>
<td>89.89</td>
<td>Turbo</td>
<td>Caterpillar</td>
<td>G316TALE</td>
<td>1767.3</td>
<td>1374.1</td>
<td>560</td>
<td>528.97</td>
<td>0.85</td>
<td>3.02</td>
<td>0.48</td>
<td>0.00</td>
</tr>
<tr>
<td>125</td>
<td>Gilby 03-28 K502</td>
<td>03-28-41-04-WSM</td>
<td>0.00</td>
<td>2.18</td>
<td>1.48</td>
<td>89.89</td>
<td>Turbo</td>
<td>Caterpillar</td>
<td>G316TALE</td>
<td>1767.3</td>
<td>1339.9</td>
<td>664</td>
<td>511.14</td>
<td>0.82</td>
<td>3.29</td>
<td>0.47</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Total Number of Units: 40
Total CO2: 10463.87 tonnes
Total SO2: 566.28 tonnes
Total NOx: 131.83 tonnes
Total PM10: 0.43 tonnes
Total PM2.5: 0.54 tonnes

©2017 Detechtion Technologies – Confidential and Proprietary
Detechtion Study

- ~800,000 Enalysis reports generated over the last 4 years analysed

- Checked for instances where the configuration was adjusted where the cylinder and horsepower usage were reduced – optimise for fuel savings
 - 1,381 unique assets across 6 companies
 - 452 of those (33%) assets adjusted the pocket configuration at least once in the last 4 years where the utilisation decreased (cylinder or horsepower).
 - The 452 assets were optimised a total of 852 times in a span of 4 years
 - BEFORE: 3,885 E^3m^3/d in fuel (2,978,300 tonnesCO_2/yr)
 - AFTER: 3,513 E^3m^3/d fuel (2,693,500 tonnesCO_2/yr)

- SAVINGS: Cumulative reduction of daily fuel consumption by 372 E^3m^3/d (284,800 tonnesCO_2/yr)
Results: Extrapolate for the remainder of Detechtion’s Assets, annualize the results, and assume that utilisation levels as a result of optimisation are maintained for 1 year;

- **Fuel Reduction**: 60,200 E^3m^3 / Year = $4,260,000$ Savings / Year
 - **CO₂ Reduction**: 126,000 Tonnes CO₂ / Year
 - **Electricity Reduction**: 9,972,000 kWh / Year = $1,000,000$ Savings / Year

@$2.00/GJ and $0.10/kWh
Results (cont): Assume that utilisation levels as a result of optimisation have continued since the start of the study in 2012 to present day – *Continuous fleet-wide optimisation*:

- **Fuel Reduction:** ~285,000 E3m3
- **CO$_2$ Reduction:** ~600,000 Tonnes CO$_2$
- **Electricity Reduction:** ~47,500,000 kWh
Thank You

For more information please contact

Adrian Cowan - Manager, Engineering Services

- +61.417.897.717
- acowan@detechtion.com
- www.detechtion.com

Canadian Headquarters
1100 8th Ave SW
Suite 277
Calgary Alberta T2P 3T8
Telephone: 403.250.9220
Fax: 403.250.9202

International Headquarters
3200 Southwest Freeway
Suite 3250
Houston, TX 77027
Telephone: 713.357.4775
Fax: 713.559.3059

Regional Office - Australia
Level 54, ONE ONE ONE Eagle Street
111 Eagle Street
Brisbane, Queensland 4000
Telephone: +61 (0) 471.897.717